Green rust articles (key and from the consortium marked with *)

Stability, structure, formation and transformation

Hansen et al. (1989) Composition, stabilization, and light absorption of Fe(II)Fe(III) hydroxy-carbonate ('green rust'). Clay Minerals 24, 663-669
http://www.minersoc.org/pages/Archive-CM/Volume_24/24-4-663.pdf

Hansen et al. (1994) Evaluation of the free energy of formation of Fe(II)-Fe(III) hydroxide-sulphate (green rust) and its reduction of nitrite. Geochimica et Cosmochimica Acta 58, 2599-2608

http://www.sciencedirect.com/science/article/pii/0010938X9390101L

Refaic et al. (1999) Chemical composition and Gibbs standard free energy of formation of Fe(II)-Fe(III) hydroxysulphate green rust and Fe(II) hydroxide. Clay Minerals 34, 499-510
http://claymin.geoscienceworld.org/content/34/3/499

http://minmag.geoscienceworld.org/content/72/1/159

http://minmag.geoscienceworld.org/content/72/1/201

*Christiansen et al. (2009) Composition and structure of an iron-bearing, layered double hydroxide (LDH) - Green rust sodium sulphate. Geochimica et Cosmochimica Acta 73, 3579-3592.
Davesne E. et al. (2010) Free energy of formation for green rust sodium sulphate (NaFeII6FeIII3(OH)18(SO4)2(s)). Geochimica et Cosmochimica Acta 74, 6451-6467

http://pubs.acs.org/doi/abs/10.1021/la903935j

http://pubs.acs.org/doi/abs/10.1021/ic500495a

Crystal Growth

http://ammin.geoscienceworld.org/content/100/10/2091

Occurrence in nature
Trolard et al. (2007) fougerite, a new mineral of the pyroaurite-iowaite group: Description and crystal structure. Clays and Clay Minerals 55, 323-334
http://ccm.geoscienceworld.org/content/55/3/323

and a critical comment on the above publication
*Christiansen et al. (2011) On Fougerite. Clays and Clay Minerals. 59, 3-9
http://ccm.geoscienceworld.org/content/59/1/3

http://pubs.acs.org/doi/abs/10.1021/es8011047
Formation during bacterial iron reduction
Fredrickson et al. (1998) Biogenic iron mineralization accompanying the dissimilatory reduction of hydrous ferric oxide by a groundwater bacterium. GCA, 62, 3239-3257

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC92949/

Hansel et al. (2003) Secondary mineralization pathways induced by dissimilatory iron reduction of ferrihydrite under advective flow. GCA, 67, 2977–2992

Redox reaction and interaction with trace components
Hansen et al. (1996) Abiotic nitrate reduction to ammonium: Key role of green rust. Environmental Science and Technology, 30, 2053-2056
http://pubs.acs.org/doi/abs/10.1021/es950844w

http://science.sciencemag.org/content/278/5340/1106

http://pubs.acs.org/doi/full/10.1021/es980221t

Williams and Scherer (2001) Kinetics of Cr(VI) reduction by carbonate green rust. Environmental Science and Technology 35, 3488-3494
http://pubs.acs.org/doi/abs/10.1021/es010579g

Randall et al. (2001) Sorption of As(V) on green rust (Fe₄(II)Fe₂(III)(OH)₁₂SO₄·3H₂O) and lepidocrocite (γ-FeOOH): Surface complexes from EXAFS spectroscopy. Geochimica et Cosmochimica Acta 65, 1015-1023
O'Loughlin et al. (2003) Reduction of Uranium(VI) by mixed iron(II)/iron(III) hydroxide (green rust): Formation of UO$_2$ nanoparticles. Environmental Science and Technology, 37, 721-727
http://pubs.acs.org/doi/abs/10.1021/es0208409

O'Loughlin et al. (2003) Reduction of AgI, AuIII, CuII, and HgII by FeII/FeIII hydroxysulfate green rust. Chemosphere 53, 437-446

http://pubs.acs.org/doi/abs/10.1021/es030304w

http://pubs.acs.org/doi/abs/10.1021/es026341p

http://pubs.acs.org/doi/abs/10.1021/es0345569

Jönsson and Sherman (2008) Sorption of As(III) and As(V) to siderite, green rust (fougerite) and magnetite: Implications for arsenic release in anoxic groundwaters. Chemical Geology 255, 173-181

*Nedel et al. (2010) Uptake and release of cerium during Fe-oxide formation and transformation in Fe(II) solutions. Environmental Science and Technology 44, 4493-4498
http://pubs.acs.org/doi/abs/10.1021/es9031503

*Christiansen et al. (2011) Neptunyl (NpO$_2^-$) interaction with green rust, GR$_{Na,S04}$. Geochimica et Cosmochimica Acta 75, 1216-1226
http://pubs.acs.org/doi/abs/10.1021/jp500462r

Reactive Iron Barriers and Corrosion
http://link.springer.com/article/10.1007%2Fs002540000178

Furukawa et al. (2002) Formation of ferrihydrite and associated iron corrosion products in permeable reactive barriers of zero-valent iron ES&T, 36, 5469-5475
http://pubs.acs.org/doi/abs/10.1021/es025533h

Isotopes

Wiesli et al. (2004) Experimental determination of Fe isotope fractionation between aqueous Fe(II), siderite and “green rust” in abiotic systems. Chemical Geology 211, 343-362

Stylo et al. (2011) Uranium isotopes fingerprint biotic reduction. PNAS 112, 5619-5624
http://www.pnas.org/content/112/18/5619.full