Bachelor & Master Projects

If you are in doubt about what you would like to study in your research project, whether at bachelor or masters level, don’t worry.  This is actually quite normal at your stage of education. If you are interested in nature and how things work – and why – come and talk with us and we will help you find a project that fits your interests, your hopes for the future and an advisor and fellow students that you will enjoy working with (stipp at

Susan Stipp

If you already have a research question, or if you are hunting one, we will help you find a research project where you can learn about, and use, one or two of the nanotechniques that we have in our laboratories. You will gather data, compare your results with studies in the literature and write a report. Sometimes contributions from student projects are included in one of our scientific articles.

Du vælger et forskningsspørgsmål, og vi hjælper dig med at lære om og benytte en eller to af de nanoteknikker, vi har til rådighed i vores laboratorium. Du kommer til at indsamle data, sammenligne dine resultater med dem i literaturen og skrive en rapport. Til tider bidrager resultater fra studenterprojekter til en af vores videnskabelige artikler.

Henning O. Sørensen

  1. You have the possibility to determine the structure at mineral-fluid interfaces using X-ray data. The fluid can be an organic material or an aqueous solution containing salts. If the timing is lucky, you can also go to a synchrotron facility and take part in the actual measurements.
  2. Studies of fluids in chalk at nanometre scale. Determination of the separation between hydrophobic and hydrophylic fluids in a porous material with help of 3D scanning electron microscopy, using state of the art instrument facilities.
  1. Du har mulighed for at bestemme og analysere strukturen af væske-mineral grænsefladen ud fra røntgendata. Væsken, hvis struktur der bestemmes, kan enten være en organisk væske eller en vandig opløsning af salte. (Hvis timingen er rigtig kan du også deltage i de eksperimentelle målinger.)
  2. Studier af væsker i kalk på nanometer skala. Bestemmelse af fordelingen mellem hydrophobe og hydrophile væsker i et porøst materiale ved hjælp af 3D skanningselektronmikroskopi.

Nico Bovet

Bachelor and master student will use the state-of-the-art X-ray photoelectron spectroscopy instrument in our lab to characterize minerals or rocks treated in various ways. The exact subject can be discussed with the student, the overall goal being to answer the question:
What is the effect of the liquid composition on the surface properties of a natural material in contact with it?

Tue Hassenkam

You will use nanotechniques to see the surface of solid materials, including Atomic Force Microscopy (AFM). We will start with looking at how some molecules interact with mineral surfaces in different types of salt water. We can also see how various organic molecules interact with each other in various types of solution.

Du kommer til at bruge nano-teknikker til at se på overflader med, herunder Atomic Force Microscope (AFM). Vi starter med at kigge på hvordan nogle molekyler vekselvirker med mineral overflader i forskellige typer af saltvand. Vi kan også se på hvordan forskellige organiske molekyler vekselvirker med hinanden i forskellige typer saltvand.

Dominique Tobler

How do biominerals (e.g., shells, corals, diatoms) form?
Many organisms build their skeleton and shell out of biominerals such as silica and calcium carbonate. These biominerals have unique properties, high strength and stability. This makes them highly desirable materials also for industry. In this laboratory project, you will synthesise biominerals in the lab, study their formation kinetics and apply a suite of spectroscopic, microscopic and diffraction techniques to assess its properties and reactivity. Many organisms build their skeleton and shell out of biominerals such as silica and calcium carbonate. These biominerals have unique properties, high strength and stability. This makes them highly desirable materials also for industry. In this laboratory project, you will synthesise biominerals in the lab, study their formation kinetics and apply a suite of spectroscopic, microscopic and diffraction techniques to assess its properties and reactivity.

Using natural materials to clean up polluted soils and waters?
Our environment hosts a great variety of natural materials that can trap pollutants, detoxify waste, and sequester CO2. Detailed characterization of these processes and their study at different scale is needed to see them applied at the field scale. You will synthesise iron (oxy)hydroxides, modify their composition and assess their reactivity with toxic compounds such as heavy metals and chlorinated solvents in batch reactions. In this process, you learn a suite of spectroscopic, microscopic and diffraction techniques to monitor reactions and characterise the solution and solid phase before and after reaction.

Kim N. Dalby

To further the knowledge of how the 3D structure of solids changes after being in contact with fluids, you could:

  1. Experiment in the laboratory. Pass fluids through porous solids in a controlled way.
  2. Image with the scanning electron microscope (SEM) and/or tomography. What does the structure and chemistry of the solid look like before and after the reactions. Use cryo-SEM to image the solid/liquid interface in vacuum.
  3. Process images. How can you retrieve meaningful physical properties (porosity, grain size, etc.) from the SEM images?

Martin Andersson

You will use molecular modelling to study fundamental processes taking place at surfaces of natural materials. Examples include how ions or organic molecules adsorb on a mineral and how a mineral dissolves and precipitates. Applications range from oil recovery to how organisms grow minerals such as bone. You will work closely with other people in our dynamic and friendly group, experimentalists as well as theoreticians.

Knud Dideriksen

  1. Drinking water in southeast Asia often contains high quantitites of toxic elements such as arsenic. Electrochemical formation of Fe(II) from iron and further oxidation to Fe(III) leads to iron oxides, which capture As. A project could quantify the rate with which Fe(II) oxides by O2 under formation of Fe oxides and predict the rates of As adsorption and As(III) formation.
  2. Test of a method to determine the atomic structure of nanocrystalline Fe oxides, using electron diffraction and pair distribution function analysis.  If the timing is right for the project it could be possible to be part of the team to data at a synchrotron facility.
  3. Electron transfer from Fe(II) to iron oxide and rapid exchange of iron isotopes between solution and solid phases. A project could determine the exchange rates for a type of iron oxide under specific conditions.
  1. Drikkevand i det sydøstlige Asien indeholder ofte høje mængder af giftigt arsen. Elektrokemisk dannelse af Fe(II) og efterfølgende oxidation leder til jernoxider, der opfanger arsen. Et bachelorprojekter kunne kvantificere raten hvormed Fe(II) oxideres af ilt under tilstedeværelsen af jernoxider, samt forudsige As(III) oxidationsrate og As adsorption.
  2. Test af metode til at bestemme den atomare struktur af nanokrystalline jernoxider ved hjælp af elektron diffraktion og “Par-fordelingsfunktion analyse”
  3. Elektronoverførsel fra Fe(II) til jernoxid leder til hastig udveksling af jernisotoper mellem opløst og fast fase. Et bachelor projekt kunne bestemme udvekslingsrater for en type jernoxid ved bestemte betingelse.

Karina Sand

Biomimetic (when we synthesis materials to mimic nature) approach to increase formation of CO2 to minerals
We could solve some of our CO2 problems by converting the gas form to carbonate minerals (for example, calcite, CaCO3).  This process takes place automatically in the long term in nature. There are several challenges with the gas-solid conversion. A project could contribute to improving effectiveness by controlling calcite precipitation in an underground reservoir by taking advantage of the processes used by biomineralising organisms, such as bacteria and some organic molecules, to get over the thermodynamic barriers to form carbonate minerals.

Formation of bio-materials
Many shell forming organisms use polymers to either control mineral growth or to form materials that are stronger or better at withstanding stress (for example attack by other organisms). Mother of pearl is composed of mineral platelets that sit in a thin matrix of organic polymer. This interaction between organic and inorganic parts make the material about 40% stronger than the mineral alone.

Biofilm and minerals
Adhesion of biofilm on various surfaces is a problem for cleanliness, for examples in hospitals. Biofilm can enhance the growth of minerals which then can be used by many bacterial. This can also be a problem for industrial processes, where mineral scales form in unwanted places. We are working on understanding the interaction between biofilm and surfaces with the intention of understanding how they are influences.  Better understanding about how and when biofilms and mineral scales form will give insight into how to prevent or remove biofilms in general.

Biomimetrisk tilgang til at øge omdannelsen af CO2 til mineraler
Vi kan løse en del af CO2 problemet ved at omdanne CO2 til karbonat mineraler (fx kalsit, CaCO3). Denne proces foregår automatisk om end langsomt i naturen. Der er forskellige udfordringer ved at tilføje CO2 til en bjergart. Jeg arbejder med at effektivisere samt at rummeligt styre udfældningen af karbonat i et bjergartsreservoir ved at benytte en tilgang som er kendetegnet for mange biomineraliserende organismer, nemlig at udnytte termodynamiske barrierer som fx bakterier, polymerer og mineraler har for dannelsen af karbonat.

Dannelse af bio-materialer
Mange skallede organismer bruger polymerer til enten at styre mineralvæksten eller til at danne materialer der er stærke så de bedre kan modstå slag etc fra andre organismer. Perlemor består ar mineral plader som sidder i en tynd matrix a polymer. Dette sammenspil gør at materialet opnår ca. 40% øget styrke i forhold til mineralet alene.

Biofilm og mineraler
Adhæsion af biofilm på diverse overflader er et problem for hygiejne på eksempelvis hospitaler. Biofilm kan nedsætte barrierer for mineral vækst hvilket udnyttes af mange bakterier, men som kan være et problem for industrielle processer idet der dannes mineraler utilsigtede steder. Vi arbejder med at forstå bindingerne mellem biofilm og overflader med henblik på at forstå hvordan de kan påvirkes således at vi bedre kan styre hvor og hvornår de dannes og hjælpe til med at nedbryde biofilmen igen.